최대 1 분 소요

※ bayes_opt

■ BayesianOptimization

□ 라이브러리 호출

> from bayes_opt import BayesianOptimization

rom sklearn.model_selection import cross_val_score

def model_evaluate(n_estimators, maxDepth): clf = RandomForestRegressor( n_estimators= int(n_estimators), max_depth= int(maxDepth)) scores = cross_val_score(clf, x_train, y_train, cv=5, scoring=’r2’) return np.mean(scores)

def bayesOpt(x_train, y_train): clfBO = BayesianOptimization(model_evaluate, {‘n_estimators’: (100, 300), ‘maxDepth’: (2, 6) }) clfBO.maximize(init_points=5, n_iter=10) print(clfBO.res)

bayesOpt(x_train, y_train) ```

댓글남기기